Data Assimilation and Parameter Estimation for the Global Ionosphere-Thermosphere Model using the Ensemble Adjustment Kalman Filter

Alexey V. Morozov, Aaron J. Ridley, Dennis S. Bernstein - University of Michigan, Ann Arbor, MI
Nancy Collins, Timothy J. Hoar, Jeffrey L. Anderson - National Center for Atmospheric Research, Boulder, CO

This work is supported by AFOSR DDDAS grant FA9550-12-1-0401 and NSF CPS grant CNS 1035286

Introduction

- GITM underestimates mass density when compared with CHAMP measurements.
- One way to correct this is to use CHAMP measurements to estimate GITM parameters that would compensate for modeling error.

Model

Global Ionosphere-Thermosphere Model (GITM)
- is an upper atmosphere model,
- is a contractive system (i.e. strongly forced),
- does not assume a hydrostatic solution, and
- does not use a pressure-based coordinate system.

The last two features allow for more realistic physics in auroral region.

GITM: Inputs and Outputs

Inputs (parameters)
- solar flux index \(F_{10.7} \)
- neutral temperature \(T_u \)
- neutral pressure \(P_u \)
- pressure \(p \)
- neutral mass density \(N \)
- ion number density \(N_i \)

Outputs
- neutral velocity \(u \)
- ion velocity \(v \)
- ion temperature \(T_i \)
- neutral temperature \(T_u \)

GITM: Vertical Equations

- Vertical solver accounts for all the source terms.
- Vertical continuity, momentum, and temperature equations are

\[
\frac{\partial}{\partial z} \left(\frac{1}{\rho} \frac{\partial p}{\partial z} \right) = \frac{\rho_0 g}{\rho} - \nabla \cdot \mathbf{F} \quad \text{(1)}
\]

\[
g = \frac{\partial^2 q}{\partial z^2} + c_s^2 \partial^2 q + \frac{1}{2} \partial \left(\frac{\rho_0 g}{\rho} \right) \quad \text{(2)}
\]

- Localization

- The effect of assimilation can be restricted to a region to avoid updating uncorrelated states.

Results: Simulated Data from Subsolar Point

- This introduction example is a perfect model experiment, i.e. it takes measurements from a GITM truth simulation with \(F_{10.7} \) fixed at 130.
- EAKF assimilation window is 30 minutes, measurements are available every minute, horizontal cutoff of 30°, and vertical cutoff of 100km.
- 20 ensemble members are for 2 days prior to Dec 01 with \(\rho \) values coming from normal distribution \(~N(10, 25) \).
- \(\rho \) is inflated using \(\rho_i = 7 \).

Example: Estimating a Time-Varying Parameter

- Consider the linear system

\[
x_k = 0.5x_{k-1} + u_{k-1}, \quad y_k = x_k + 2, \quad u_k = 1.0 \sin(0.5k), \quad x_0 = 0. \quad \text{(12)}
\]

Conclusions and Future Work

- EAKF was successfully used to estimate GITM states \((N, N_i, P, T_u, u, \dot{u}) \) and a parameter \(F_{10.7} \) using CHAMP measurements.
- One proposed extension is estimating the full solar spectrum at the top of the atmosphere \((T_u(z)) \).
- Another possible extension is using Total Electron Content (TEC) measurements to estimate heating efficiency \(\dot{u} \).