Widespread expansion of boreal shrublands in the Siberian Low Arctic since the 1960s

Gerald V. Frost1, Howard Epstein2, Skip Walker2

1University of Virginia, Charlottesville, USA; 2University of Alaska, Fairbanks, USA

Abstract
Descalified imagery from the KH-48 Corona and KH-7 Gambit Cold-War satellite surveillance systems (1963-1972) are a unique, high-resolution dataset that establishes a baseline for landcover-change studies in the Russian Arctic spanning 5 decades. We co-registered Corona/Gambit and modern high-resolution imagery for ten ~65 km² Low Arctic landscapes in northern Siberia and quantified changes in the extent of alder (Alnus) shrublands (7 sites) and larch (Larix) woodlands (5 sites). We made ground observations at several northwest Siberian sites to identify local mechanisms, related to soils, permafrost geomorphology, and disturbance, that result in landscape-scale heterogeneity in the response of vegetation to recent climate warming.

Alder shrubland cover increased at all sites; shrubland extent increased 5-27% at the northwest Siberian sites and ~9% at Chukotkan sites. In northwest Siberia, alder expansion was closely linked to disturbance processes in permafrost, while most of the alder expansion in Chukotka occurred on hillside colluvium and floodplains. We observed modest increases in larch abundance in four of nine sites, but overall, larch abundance was ~65% in 1965 and 90% in 2004. Larch treelines are advancing; the largest increases in shrub cover occurred in the northwest Siberian region. At the landscape-scale, areas of vegetation change were closely linked to specific geomorphic features and disturbance processes that promote seedling recruitment. Lecturers indicate landscapes examined in panels A-D, below and right.

Methods
The Siberian Arctic represents a large knowledge gap in studies of tundra shrubification (Fig. 1). We compared very-high-resolution (VHR) satellite imagery from the 1960s and recent years to quantify changes in shrubland and tree extent in ten widely-distributed Siberian tundra ecotones over a ~45-year time period. Coverage of KH-48 Corona imagery (~2 x 2 pixels) is extensive for northwest Siberia, Yakutia, and Chukotka. Additional KH-7 Gambit imagery (~70 x 70 pixel) exists for smaller areas across the Siberian Arctic. We identified ecotonal landscapes with overlapping historical and modern VHR imagery, co-registered the images, overlaid a grid of sampling-points at 50 m spacing, and quantified changes in alder and larch abundance using a point-interrupt sampling approach.

We also compiled Landsat stacks (1985-2011) for northeastern Siberian sites and applied pixel-based linear regression to examine landscape-scale heterogeneity in trends of the Normalized Difference Vegetation Index (NDVI). We derived surface reflectance values for the Landsat data using the LEDAPS algorithm (Mas et al., 2000), computed the NDVI, and conducted linear regression for each pixel. Finally, we compiled weather data from ground stations near the study areas and determined trends in summer temperature for the satellite period of record (1965-2011).

Results
Summary of changes in boreal shrubs and trees (below left) and correlation between rates of boreal vegetation expansion and summer temperature increase (below, right). Shrub and tree cover increased at all but one site; alder expansion rates were generally much higher than for larch. Expansion was fastest in northwest Siberia. Expansion rates correlate well with the magnitude of warming when tree- and shrub-dominated sites are considered together; however, shrub-dominated sites experienced similar warming but had highly variable expansion rates. These differences are largely explained by landscape-scale factors.

Acknowledgements
This work was funded by the NASA Virginia Space Grant Consortium and the Department of Environmental Scientists at the University of Virginia. Modern satellite imagery was provided courtesy of the National Geospatial-Intelligence Agency Commercial Imagery Program (NGA/CIP).

Literature Cited

Summary and conclusions
1) Boreal shrub cover increased at all seven shrub-dominated sites, but the magnitude of increase varied (5-~20%); modest increases in shrub cover occurred at 4 of 5 sites; extensive die-back of larch occurred at one site due to thermokarst.
2) Shrub expansion was closely linked to landscape patches where active disturbance processes create mineral-rich seedbeds with little competing vegetation.
3) The susceptibility of tundra landscapes to boreal shrub advance is highly dependent on the frequency and scale of disturbance processes that create favorable seedbeds.
4) Widespread changes in Low Arctic land-cover due to shrub increase are possible within multi-decadal timescales, whereas the spread of trees is much slower.
5) Northward expansion of boreal vegetation is a global phenomenon that behaves according to local rules.

Comparison of 1965 (Corona) and 2004 (IKONOS) photos, and NDVI trends for shrub expansion at Dudinka. Summer temperature time-series at Dudinka, 1965-2010. The lat 1960s and early 1970s were relatively cool throughout most of Low Arctic Siberia.

Comparison of 1965 (Gambit) and 2009 (GoEyes-I) imagery showing expansion of alder shrublands on hilltops near Dudinka, northwest Siberia. Shrub expansion at Dudinka is to be linked to thermokarst ground, similar to that seen at Obskaya (panel A).

Comparison of 1968 and 2002 photos, and NDVI trends for cryogenic landslide area at Tazovsky. Red markers indicate points with newly-developed alder cover. Shrub expansion and greening are concentrated on the upper margins of cryogenic landslides (Fig. 9, right). Increases in shrub cover at Taz were modest compared to other northwest Siberian sites, despite comparable trends in summer temperature (below right). This is probably due to the limited extent of favorable, mineral-rich substrates for alder recruitment.

Fig. 1. Locations of observational studies of changes in tundra shrub abundance. Very little information exists for the Siberian Arctic, and inferences of circumpolar shrubification have largely been based on observations in the North American Arctic.

Fig. 2. Study landscapes in the Siberian Low Arctic. A) Additional Gambit imagery for southeastern Siberian sites; B) Observation of intact vegetated steppe tundra; C) Observation of intact vegetated steppe tundra; D) Age of sites.

Thermokarst and degraded ice-wedges (left) and time-series of mean annual temperature (below), Chersky, Yakutia. Thaw of ice-rich floodplain deposits has led to extensive loss of larch woodland near the Kolyma River. Chersky experienced the strongest increases in mean annual temperature of any study site.