P31A-1876: Ordinary Chondrite Spectral Signatures in the 243 Ida Asteroid System

« Return to search results · New Search

Authors: James C Granahan

Author Institutions: SAIC, Bealeton, VA, USA

The NASA Galileo spacecraft observed asteroid 243 Ida and satellite Dactyl on August 28, 1993, with the Near Infrared Mapping Spectrometer (NIMS) at wavelengths ranging from 0.7 to 5.2 micrometers[Carlson et al., 1994]. Work is being conducted to produce radiance-calibrated spectral images of 243 Ida consisting of 17-channel, 299 meters per pixel files and a 102-channel, 3.2 kilometer per pixel NIMS observations of 243 Ida for the NASA Planetary Data System (PDS). These data are currently archived in PDS as uncalibrated data number counts. Radiometric calibrated 17-channel and 102-channel NIMS spectral data files of Dactyl and light curve 243 Ida observations are also being prepared. Analysis of this infrared asteroid data has confirmed that both 243 Ida and Dactyl are S-type asteroid objects and found that their olivine and pyroxene mineral abundances are consistent with that of ordinary chondrite meteorites. Tholen [1989] identified 243 Ida and Chapman et al. [1995] identified Dactyl as S-type asteroids on the basis of spectral data ranging from 0.4 to 1.0 micrometers. S-type are described [Tholen, 1989] as asteroids with a moderate albedos, a moderate to strong absorption feature shortward of 0.7 micrometers, and moderate to nonexistent absorption features longward of 0.7 micrometers. DeMeo et al. [2009] found 243 Ida to be a Sw asteroid based on Earth-based spectral observations 0.4 to 2.5 micrometers in range. Sw is a subclass of S-type asteroids that has a space weathering spectral component [DeMeo et al., 2009]. The NIMS data 243 Ida and Dactyl processed in this study exhibit signatures consistent with the Sw designation of DeMeo et al. [2009]. Measurements of olivine and pyroxene spectral bands were also conducted for the NIMS radiance data of 243 Ida and Dactyl. Band depth and band center measurements have been used to compare S-type asteroids with those of meteorites [Dunn et al., 2010; Gaffey et al., 1993]. The 243 Ida spectra were found to be consistent with those of Granahan [2002] and corresponded to measurements of LL chondrites. Dactyl was found to have spectral bands that correlate to L chondrite meteorite signatures as measured by Dunn et al. [2010]. The spectra band measurements of both objects correspond to those of the SIV class [Gaffey et al., 1993] of the S asteroids. Both L and LL chondrites are types of ordinary chondrite meteorites. Carlson, R. W., et al. (1994), Bulletin of the American Astronomical Society, 26, 1156. Chapman, C. R., et al. (1995), Nature, 374, 783-785. DeMeo, F. E., R. P. Binzel, S. M. Slivan, and S. J. Bus (2009), Icarus, 202, 160-180. Dunn, T. L., T. J. McCoy, J. M. Sunshine, and H. Y. McSween (2010), Icarus, 208, 789-797. Gaffey, M. J., J. F. Bell, R. H. Brown, T. H. Burbine, J. L. Piatek, K. L. Reed, and D. A. Chaky (1993), Icarus, 106, 573-602. Granahan, J. C. (2002), Journal of Geophysical Research Planets, 107(E10), 5090-5100. Tholen, D. J. (1989), in Asteroids II, edited by R. P. Binzel, T. Gehrels, and M.S. Matthews, pp. 1139-1150, University of Arizona Press, Tucson.

Leave a Comment

Name and email are required. In the name field, please enter your first name and last initial.