ED43B-0730: Teaching about time by understanding Geologic Time Scales: The Geological Society of America Geologic Time Scale and its history

« Return to search results · New Search

Authors: John W Geissman1, J D Walker2

Author Institutions: 1. Geosciences ROC 21, Univ Texas at Dallas, Richardson, TX, USA; 2. Geology, Univ of Kansas, Lawrence, KS, USA

Geologic time scales, of one form or another, are used in most undergraduate geosciences courses, even including introductory physical geology or equivalent. However, satisfactory discussions of how geologic time scales originated, and how they have evolved to modern versions, are far too often conveniently or inconveniently left out of classroom discussions. Yet it is these kinds of discussions that have the potential of solidifying student appreciation of deep time and rates of geologic processes. We use the history and development of the Geological Society of America Geologic Time Scale, which reflects major developments in the fields of stratigraphy, geochronology, magnetic polarity stratigraphy, astrochronology, and chemostratigraphy, as a focus of how specific details of time scales can be used to teach about time. Advances in all of these fields have allowed many parts of the time scale to be calibrated to precisions approaching less than 0.05 %. Notable time intervals for which collaborative, multifaceted efforts have led to dramatic improvements in our understanding of the character and temporal resolution of key evolutionary events, in both marine and terrestrial environments, include the Triassic-Jurassic, Permo-Triassic, and Neoproterozoic-Phanerozoic boundaries (or transitions). Many of the details, but certainly not all, can be incorporated in discussions of how we know about geologic time in the classroom. For example, we presently understand that both the end-Permian ecological crisis and the biostratigraphic Permian-Triassic boundary, as calibrated by conodonts, lie within a ca. 700 ka long normal polarity chron. The reverse to normal polarity transition at the beginning of this chron is ca. 100 ka earlier than the ecological crisis and thus slightly older than the current estimate, based on high precision U-Pb zircon age determinations, of ca. 252.4 Ma for the Permian-Triassic boundary. This polarity transition occurred during the early part of the major negative del 13C isotope excursion that is estimated to have lasted ca. 500 ka beginning in the very latest Permian. Current geologic time scales are vastly improved over the first geologic time scale published by Holmes, nearly a hundred years ago in 1913, that used a total of eight numerical ages to establish the Phanerozoic time scale.

Leave a Comment

Name and email are required. In the name field, please enter your first name and last initial.