ED11B-0728: Developing Connectivist Schemas for Geological and Geomorphological Education

« Return to search results · New Search

wbw3

Authors: Brian Whalley

Author Institutions: Geography, Sheffield University, Sheffield, United Kingdom

Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named ‘things’ is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from ‘known’ through ‘need to know’ to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg’s ‘thinking styles’ and Siemens’ connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson’s (2006) ‘learning for’ framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, ‘Virtorial’ provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of ‘Materials’ (rock, sediments etc), Processes (slope, glacial processes etc) and ‘Geometry’ (what it looks like). These components provide basic metadata for any landform in a landscape. Thus, the recognition of a landform means much more than a feature; the metadata provide contexts that can be used for interpretation in the field or laboratory, individually or in discussion groups, distance or field learning environments.
http://http://brianbox.net/

Leave a Comment

Name and email are required. In the name field, please enter your first name and last initial.